Coroutining Folds with Hyperfunctions

نویسندگان

  • John Launchbury
  • Sava Krstic
  • T. E. Sauerwein
چکیده

Fold functions are a general mechanism for computing over recursive data structures. First-order folds compute results bottom-up. With higher-order folds, computations that inherit attributes from above can also be expressed. In this paper, we explore folds over a form of recursive higher-order function, called hyperfunctions, and show that hyperfunctions allow fold computations to coroutine across data structures, as well as compute bottom up and top down. We use the compiler technique of foldr-build as an exemplar to show how hyperfunctions can be used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic hyperfunctions, tempered hyperfunctions, and asymptotic expansions

We introduce new subclasses of Fourier hyperfunctions of mixed type, satisfying polynomial growth conditions at infinity, and develop their sheaf and duality theory. We use Fourier transformation and duality to examine relations of these asymptotic and tempered hyperfunctions to known classes of test functions and distributions, especially the Gel’fand-Shilov spaces. Further it is shown that th...

متن کامل

A Massera Type Theorem in Hyperfunctions in the Reflexive Locally Convex Valued Case

We continue our study on Massera type theorems in hyperfunctions from [11] and [12]. In the latter, we gave a result in hyperfunctions with values in a reflexive Banach space. In this article, we report its generalization to the case of hyperfunctions with values in a reflexive locally convex space. AMS Mathematics Subject Classification (2010): Primary 32A45; Secondary 32K13

متن کامل

Polylogarithms, Hyperfunctions and Generalized Lipschitz Summation Formulae

A generalization of the classical Lipschitz summation formula is proposed. It involves new polylogarithmic rational functions constructed via the Fourier expansion of certain sequences of Bernoulli– type polynomials. Related families of one–dimensional hyperfunctions are also constructed.

متن کامل

Fourier transformation of Sato’s hyperfunctions

A new generalized function space in which all Gelfand-Shilov classes S ′0 α (α > 1) of analytic functionals are embedded is introduced. This space of ultrafunctionals does not possess a natural nontrivial topology and cannot be obtained via duality from any test function space. A canonical isomorphism between the spaces of hyperfunctions and ultrafunctionals on R is constructed that extends the...

متن کامل

A general impossibility result on strategy-proof social choice hyperfunctions

A social choice hyperfunction picks a non-empty set of alternatives at each admissible preference profile over sets of alternatives. We analyze the manipulability of social choice hyperfunctions. We identify a domain D of lexicographic orderings which exhibits an impossibility of the Gibbard-Satterthwaite type. Moreover, this impossibility is inherited by all well-known superdomains of D. As mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013